МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ

БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

учреждение

ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА» (СПбГУТ)

ИНСТИТУТ

НЕПРЕРЫВНОГО ОБРАЗОВАНИЯ

Кафедра Интеллектуальных систем автоматизации управления

Дисциплина: Системный анализ и принятие решений

Лабораторные работы

Фамилия: Руднев Имя: Никита Отчество: Олегович

Группа

№: ИБ-02з

Санкт-Петербург 2023

Часть 1. Исследование процессов фильтрации сигналов

Цель работы – закрепление знаний и навыков, полученных в ходе изучения курса «Системный анализ и принятие решений».

Задача 1. Исследование амплитудного фильтра

Имеется канал связи, передатчик и приемник сообщений, представленных временной последовательностью амплитудных значений сигнала.

Известно:

1. передатчик формирует сигнал, описываемый выражением:

 $x(t) = \sin(\omega t_i) + \cos(\omega t_i)^2$ Где: $\omega = 1$ $t_1 = 0, 1,$ $t_2 = 0, 25$ 2. $t_3 = 0, 4$

и далее, при условии, что i=1,2,.....,52, , а Δt =0,15 создать дискретный ряд амплитудных значений сигнала.

Сигнал с передатчика по каналу связи поступает на приемник.

Задание 1.1

Используя типовой пакет Microsoft Office в среде Excel создать программный модуль выделения значений сигнала на приемнике, превышающих амплитудный уровень 1,0.

Указание.

При создании фильтра, выделяющего максимальные значения сигнала, использовать логическую процедуру «ЕСЛИ, ТОГДА» в среде Excel

Результаты представить в среде Word с графическими пояснениями, исполненными в среде Excel.

Задание 1.2

Используя типовой пакет Microsoft Office в среде Excel создать программный модуль выделения отрицательных значений сигнала на приемнике.

Указание.

Использовать данные задания 1.1

При создании фильтра, выделяющего максимальные значения сигнала, использовать логическую процедуру «ЕСЛИ, ТОГДА» в среде Excel

Результаты представить в среде Word с графическими пояснениями, исполненными в среде Excel.

Выполнение работы

В среде Microsoft Excel зададим условия задания, где $\omega = 1$, $\Delta t = 0.15$, t0=0.1, i = 1....52.

i	t	dt	W
1	0,1	0,15	1
2	0,25	0,15	1
3	0,4	0,15	1
4	0,55	0,15	1
5	0,7	0,15	1
6	0,85	0,15	1
7	1	0,15	1
8	1,15	0,15	1
9	1,3	0,15	1
10	1,45	0,15	1
11	1,6	0,15	1
12	1,75	0,15	1
13	1,9	0,15	1
14	2,05	0,15	1
15	2,2	0,15	1
16	2,35	0,15	1
17	2,5	0,15	1
18	2,65	0,15	1

Формула x(t) в программной среде MS Excel будет так: =SIN(D2*B2)+(COS(D2*B2)^2)

Итоговый модуль подсчета амплитудных значений будет выглядеть

следующим образом:

i	t	dt	W	x(t)
1	0,1	0,15	1	1,089867
2	0,25	0,15	1	1,186195
3	0,4	0,15	1	1,237772
4	0,55	0,15	1	1,249485
5	0,7	0,15	1	1,229201
6	0,85	0,15	1	1,186858
7	1	0,15	1	1,133398
8	1,15	0,15	1	1,079626
9	1,3	0,15	1	1,035114

10	1,45	0,15	1	1,007234
11	1,6	0,15	1	1,000426
12	1,75	0,15	1	1,015758
13	1,9	0,15	1	1,050816
14	2,05	0,15	1	1,09995
15	2,2	0,15	1	1,15483
16	2,35	0,15	1	1,205279
17	2,5	0,15	1	1,240303
18	2,65	0,15	1	1,249218

Зададим условия сигнала вывода амплитудных значений сигнала x(t)>1 и x(t)<0.

Задание 1.1. =ЕСЛИ(Е2>1;Е2;0)

i	t	dt	W	x(t)	x(t)>1
1	0,1	0,15	1	1,089867	1,089867
2	0,25	0,15	1	1,186195	1,186195
3	0,4	0,15	1	1,237772	1,237772
4	0,55	0,15	1	1,249485	1,249485
5	0,7	0,15	1	1,229201	1,229201
6	0,85	0,15	1	1,186858	1,186858
7	1	0,15	1	1,133398	1,133398
8	1,15	0,15	1	1,079626	1,079626
9	1,3	0,15	1	1,035114	1,035114
10	1,45	0,15	1	1,007234	1,007234
11	1,6	0,15	1	1,000426	1,000426
12	1,75	0,15	1	1,015758	1,015758
13	1,9	0,15	1	1,050816	1,050816
14	2,05	0,15	1	1,09995	1,09995
15	2,2	0,15	1	1,15483	1,15483
16	2,35	0,15	1	1,205279	1,205279
17	2,5	0,15	1	1,240303	1,240303
18	2,65	0,15	1	1,249218	1,249218
19	2,8	1,15	1	1,222771	1,222771
20	2,95	2,15	1	1,154162	1,154162
21	3,1	3,15	1	1,039852	1,039852
22	3,25	4,15	1	0,880099	0
23	3,4	5,15	1	0,679158	0
24	3,55	6,15	1	0,445125	0
25	3,7	7,15	1	0,189438	0
26	3,85	8,15	1	-0,07394	0
27	4	9,15	1	-0,32955	0
28	4,15	10,15	1	-0,56167	0
29	4,3	11,15	1	-0,75553	0
30	4,45	12,15	1	-0,89849	0
31	4,6	13,15	1	-0,98111	0
32	4,75	14,15	1	-0,99788	0
33	4.9	15.15	1	-0.94767	0

34	5,05	16,15	1	-0,83383	0
35	5,2	17,15	1	-0,66395	0
36	5,35	18,15	1	-0,44916	0
37	5,5	19,15	1	-0,20333	0
38	5,65	20,15	1	0,058157	0
39	5,8	21,15	1	0,319543	0
40	5,95	22,15	1	0,56598	0
41	6,1	23,15	1	0,784654	0
42	6,25	24,15	1	0,96572	0
43	6,4	25,15	1	1,102965	1,102965
44	6,55	26,15	1	1,194143	1,194143
45	6,7	27,15	1	1,240946	1,240946
46	6,85	28,15	1	1,248635	1,248635
47	7	29,15	1	1,225355	1,225355
48	7,15	30,15	1	1,181214	1,181214
49	7,3	31,15	1	1,127194	1,127194
50	7,45	32,15	1	1,074017	1,074017
51	7,6	33,15	1	1,031051	1,031051
52	7,75	34,15	1	1,005372	1,005372

Задание 1.2. =ЕСЛИ(Е2<0;Е2;0)

i		t	dt	W	x(t)	x(t)>1	x(t)<0
						1,08986	
	1	0,1	0,15	1	1,089867	7	1,089867
						1,18619	
	2	0,25	0,15	1	1,186195	5	0
						1,23777	
	3	0,4	0,15	1	1,237772	2	0
						1,24948	
	4	0,55	0,15	1	1,249485	5	0
						1,22920	
	5	0,7	0,15	1	1,229201	1	0

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1,18685	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	0,85	0,15	1	1,186858	8	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1,13339	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	1	0,15	1	1,133398	8	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1,07962	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	1,15	0,15	1	1,079626	6	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1,03511	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	1,3	0,15	1	1,035114	4	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1,00723	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	1,45	0,15	1	1,007234	4	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.5	0.4.5		1.000.40.6	1,00042	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	1,6	0,15	1	1,000426	6	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	1 77	0.15	1	1 015750	1,01575	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	1,/5	0,15	1	1,015/58	8	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	1.0	0.15	1	1.050016	1,05081	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1,9	0,15	1	1,00005	1 00005	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	2,05	0,15	1	1,09995	1,09995	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	2,2	0,15	1	1,15483	1,15483	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	2.25	0.15	1	1 205270	1,20527	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	2,33	0,13	1	1,203279	9	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17	2.5	0.15	1	1 2/0202	1,24030	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17	2,3	0,15	1	1,240303	1 2/021	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	2.65	0.15	1	1 249218	1,24921	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	2,05	0,15	1	1,247210	1 22277	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	2.8	1 1 5	1	1 222771	1,222/7	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	2,0	1,10	1	1,222771	1 15416	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	2.95	2.15	1	1.154162	2	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,				1,03985	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	3,1	3,15	1	1,039852	2	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	3,25	4,15	1	0,880099	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	3,4	5,15	1	0,679158	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	3,55	6,15	1	0,445125	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	3,7	7,15	1	0,189438	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	3,85	8,15	1	-0,07394	0	-0,07394
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	4	9,15	1	-0,32955	0	-0,32955
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	4,15	10,15	1	-0,56167	0	-0,56167
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	4,3	11,15	1	-0,75553	0	-0,75553
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	4,45	12,15	1	-0,89849	0	-0,89849
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	4,6	13,15	1	-0,98111	0	-0,98111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	4,75	14,15	1	-0,99788	0	-0,99788
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	4.9	15.15	1	-0.94767	0	-0.94767
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	5.05	16.15	1	-0.83383	0	-0.83383
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	5.2	17.15	1	-0,66395	0	-0,66395
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	5.35	18.15	1	-0,44916	0	-0,44916
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	5 5	1915	1	-0.20333	0	-0.20333
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	5 65	20.15	1	0.058157	0	0
40 5,95 22,15 1 0,56598 0 0 41 6,1 23,15 1 0,784654 0 0	39	5.8	21.15	1	0 319543	0	0
41 6.1 23.15 1 0.784654 0 0	40	5 95	22.15	1	0 56598	0	0
	41	61	23.15	1	0 784654	0	0

Вывод: таким образом, мы рассмотрели, пример обработки амплитудных значений сигнала в среде MS Excel. Можно сделать вывод, что функционал данной среды полностью соответствует необходимому набору операций по обработке значений сигналов и позволяет максимально автоматизировать рутинные действия.

Задание 2. Исследование полосового амплитудного фильтра.

Имеется канал связи, передатчик и приемник сообщений, представленных временной последовательностью амплитудных значений сигнала. Иллюстрация сигнала сообщения, посланного передатчиком на приемник.

Известно:

передатчик формирует сигнал, описываемый выражением:

$$x(t) = \sin(\omega t_i)^3 + \cos(\omega t_i)^5 + (\frac{\sin(\omega t_i)}{\cos(\omega t_i + \alpha)})$$

Где: $\omega = 1$
 $t_1 = 0, 1,$
 $t_2 = 0, 25$
 $t_3 = 0, 4$
 $\alpha = 0, 5$
и далее, при условии, что $i = 1, 2, \dots, 52,$, а $\Delta t = 0, 15$ создать

дискретный ряд амплитудных значений сигнала.

Сигнал с передатчика по каналу связи поступает на приемник.

Задание 2.1

Используя типовой пакет Microsoft Office в среде Excel создать программный модуль выделения значений сигнала на приемнике, а

_{диапазоне} +5 $\prec x(t) \prec$ -5

Указание.

При создании фильтра, использовать логическую процедуру «ЕСЛИ, ТОГДА» в среде Excel

Результаты представить в среде Word с графическими пояснениями, исполненными в среде Excel.

Задание 2.2

Используя типовой пакет Microsoft Office в среде Excel создать программный модуль выделения значений сигнала на приемнике, а диапазоне $+0 \prec x(t) \prec -12$, 0

Указание.

При создании фильтра, использовать логическую процедуру «ЕСЛИ, ТОГДА» в среде Excel

Результаты представить в среде Word с графическими пояснениями, исполненными в среде Excel.

Выполнение работы

В среде Microsoft Excel зададим условия задания, где $\omega = 1$, $\Delta t = 0.15$, t0=0.1, i = 1....52.

i	t	dt	W
1	0,1	0,15	1
2	0,25	0,15	1
3	0,4	0,15	1
4	0,55	0,15	1
5	0,7	0,15	1
6	0,85	0,15	1
7	1	0,15	1
8	1,15	0,15	1
9	1,3	0,15	1
10	1,45	0,15	1
11	1,6	0,15	1
12	1,75	0,15	1
13	1,9	0,15	1
14	2,05	0,15	1
15	2,2	0,15	1
16	2,35	0,15	1
17	2,5	0,15	1
18	2,65	0,15	1
19	2,8	0,15	1

Формула x(t) в программной среде MS Excel будет так:

=((SIN(D2*B2))^3)+((COS(D2*B2))^5)+((SIN(D2*B2))/(COS(D2*B2+0,5)))

Итоговый модуль подсчета амплитудных значений будет выглядеть следующим образом:

i	t		dt	W	x(t)
1		0,1	0,15	1	1,097225171
2		0,25	0,15	1	1,207201232
3		0,4	0,15	1	1,348412066
4		0,55	0,15	1	1,643610392
5		0,7	0,15	1	2,306944212
6		0,85	0,15	1	3,97965603
7		1	0,15	1	12,53760311
8		1,15	0,15	1	-10,76448879
9		1,3	0,15	1	-3,344994212

10	1,45	0,15	1	-1,703374152
11	1,6	0,15	1	-0,981235715
12	1,75	0,15	1	-0,61388038
13	1,9	0,15	1	-0,439438748
14	2,05	0,15	1	-0,391160147
15	2,2	0,15	1	-0,436385008
16	2,35	0,15	1	-0,554038886
17	2,5	0,15	1	-0,720196616
18	2,65	0,15	1	-0,899365947
19	2,8	0,15	1	-1,044264662
20	2,95	0,15	1	-1,104745552
21	3,1	0,15	1	-1,041979075
22	3,25	0,15	1	-0,840402181
23	3,4	0,15	1	-0,509323937
24	3,55	0,15	1	-0,067951385
25	3,7	0,15	1	0,493215576
26	3,85	0,15	1	1,307315098
27	4	0,15	1	3,037439792
28	4,15	0,15	1	12,92006475
29	4,3	0,15	1	-11,24992526
30	4,45	0,15	1	-5,004980513
31	4,6	0,15	1	-3,610176891
32	4,75	0,15	1	-2,949297735
33	4,9	0,15	1	-2,495968598
34	5,05	0,15	1	-2,105877196
35	5,2	0,15	1	-1,725348119
36	5,35	0,15	1	-1,32933248
37	5,5	0,15	1	-0,907277313
38	5,65	0,15	1	-0,463714868
39	5,8	0,15	1	-0,020463679
40	5,95	0,15	1	0,38701086
41	6,1	0,15	1	0,721347395
42	6,25	0,15	1	0,960059081
43	6,4	0,15	1	1,110847106
44	6,55	0,15	1	1,219623633
45	6,7	0,15	1	1,371049681
46	6,85	0,15	1	1,693985357
47	7	0,15	1	2,422443835
48	7,15	0,15	1	4,319526006
49	7,3	0,15	1	16,41720505
50	7,45	0,15	1	-8,804244902
51	7,6	0,15	1	-3,066493933

Зададим условия сигнала вывода амплитудных значений сигнала x(t) ∈ (-5;5) и x(t) ∈ (0;12).

x(t)
1,097225171
1,207201232
1,348412066
1,643610392
2,306944212
3,97965603
0
0
-
3,344994212
-
1,703374152
-
0,981235715
-0,61388038
-
0,439438748
-
0,391160147

Задание 2.2. $x(t) \in (0;12)$: =ЕСЛИ(Е2<-12; -12; ЕСЛИ(Е2<0;Е2;0)), где формула «если» определяет соответствие столбца x(t) заданному условию и если значение соответствует, то выводит его, иначе выводит прочерк в заданной ячейке.

x(t)	0	0
0	0	0
0	0	-

Вывод: Программный комплекс MS Excel позволяет выполнять и более сложные расчеты при помощи встроенных функций SIN, COS, функций задания предварительных условий (ЕСЛИ..., ТО....), позволяет обрабатывать значения, принадлежащие определенному интервалу.

Задание 3. Исследование амплитудного детектора.

Имеется канал связи, передатчик и приемник сообщений, представленных временной последовательностью амплитудных значений сигнала. Иллюстрация сигнала сообщения, посланного передатчиком на приемник.

Известно:

передатчик формирует сигнал, описываемый выражением:

$$x(t) = \sin(\omega t_i)^3 + \cos(\omega t_i)^5 + (\frac{\sin(\omega t_i)}{\cos(\omega t_i + \alpha)})$$

Где:
$$\omega = 1$$

 $t_1 = 0, 1,$
 $t_2 = 0, 27$
 $t_3 = 0, 44$
 $\alpha = 0, 5$

и далее, при условии, что i=1,2,....,52, а $\Delta t=0,17$ создать дискретный ряд амплитудных значений сигнала.

Сигнал с передатчика по каналу связи поступает на приемник.

Задание 3.1

Используя типовой пакет Microsoft Office в среде Excel создать программный модуль выделения максимальных значений сигнала на приемнике, а диапазоне +2, 0 < x(t) < -2, 0

По умолчанию полагаем, что в указанном диапазоне амплитудные значения сигнала могут принимать любые значения, как положительные, так и отрицательные, но по условию задачи следует выделить максимальные положительные значения. Другими словами, внутри указанного интервала требуется выделить максимальные амплитудные значения сигнала, которые могут быть зафиксированы приемником, в самом общем случае, в любой произвольный момент времени. Иллюстрация на рис. 3.1 к этому заданию позволяет визуально установить наличие такого амплитудного пика, важно создать формализованное правило в среде Excel, обеспечивающее амплитудную селекцию значений сигнала.

Указание.

При создании фильтра – детектора, использовать логическую процедуру «ЕСЛИ, ТОГДА» в среде Excel

Результаты представить в среде Word с графическими пояснениями, исполненными в среде Excel.

Задание 3.2

Используя типовой пакет Microsoft Office в среде Excel создать программный модуль выделения значений сигнала на приемнике, а диапазоне

+5,
$$0 < x(t) < -5, 0$$

Указание.

При создании фильтра - детектора, использовать логическую процедуру «ЕСЛИ, ТОГДА» в среде Excel

Результаты представить в среде Word с графическими пояснениями, исполненными в среде Excel.

Проиллюстрировать полученные результаты. Сопоставить результаты исполнения заданий 3.1 и 3.2, сделать выводы

Выполнение работы

В среде Microsoft Excel зададим условия задания, где ω =1, Δ t=0.17, t0=0.1, a=0.5, i = 1....52.

i	t	dt	W	a
1	0,1	0,17	1	0,5
2	0,27	0,17	1	0,5
3	0,44	0,17	1	0,5
4	0,61	0,17	1	0,5
5	0,78	0,17	1	0,5
6	0,95	0,17	1	0,5
7	1,12	0,17	1	0,5
8	1,29	0,17	1	0,5
9	1,46	0,17	1	0,5
10	1,63	0,17	1	0,5
11	1,8	0,17	1	0,5
12	1,97	0,17	1	0,5
13	2,14	0,17	1	0,5
14	2,31	0,17	1	0,5

Формула x(t) в программной среде MS Excel будет так: =((SIN(1*B2))^3)+((COS(1*B2))^5)+((SIN(1*B2))/((COS(1*B2+0,5))))

Итоговый модуль подсчета амплитудных значений будет выглядеть следующим образом:

i		t	dt	W	а	x(t)
	1	0,1	0,17	1	0,5	1,097225171
	2	0,27	0,17	1	0,5	1,222028249
	3	0,44	0,17	1	0,5	1,405709887

4	0,61	0,17	1	0,5	1,846269381
5	0,78	0,17	1	0,5	2,982314957
6	0,95	0,17	1	0,5	7,354966684
7	1,12	0,17	1	0,5	-17,55579982
8	1,29	0,17	1	0,5	-3,529917923
9	1,46	0,17	1	0,5	-1,637487699
10	1,63	0,17	1	0,5	-0,886918929
11	1,8	0,17	1	0,5	-0,538656495
12	1,97	0,17	1	0,5	-0,403669194
13	2,14	0,17	1	0,5	-0,408493377
14	2,31	0,17	1	0,5	-0,516771338
15	2,48	0,17	1	0,5	-0,696376348
16	2,65	0,17	1	0,5	-0,899365947
17	2,82	0,17	1	0,5	-1,058233617
18	2,99	0,17	1	0,5	-1,101181377
19	3,16	0,17	1	0,5	-0,977968926
20	3,33	0,17	1	0,5	-0,678637323
21	3,5	0,17	1	0,5	-0,226680974
22	3,67	0,17	1	0,5	0,368172198

Зададим условия сигнала вывода амплитудных значений сигнала x(t) ∈ (-2;2) и x(t) ∈ (-5;5).

Задание 3.1. х(t) ∈ (-2;2): =ЕСЛИ(F2<-2; -2;ЕСЛИ(F2<2;F2;2));

формула «если» определяет соответствие столбца x(t) заданному условию и если значение соответствует, то выводит его, иначе выводит прочерк в заданной ячейке.

По условию задания требуется выделить максимальные значения сигнала, поступающие на приемник. Для выделения искомых значений воспользуемся функцией МАКС().

Результат:

50	4,86	0,17	1	0,5	-2,60723	-	-2,607231776
51	5,03	0,17	1	0,5	-2,15658	-	-2,156576915

52	5,2	0,17	1	0,5	-1,72535	-1,725348119	-1,725348119
Максимальные значения x(t) в диапазоне				1,846269381	3,240065197		

Вывод: Поиск максимальных и минимальных значений сигнала в диапазоне удобнее всего осуществлять с помощью функций МИН(), МАКС().

Часть 2. Точечные оценки исследуемого процесса

Задание 4. Формирование оценки выборки сигнала

В десяти независимых измерениях температуры процессора, установленного на компьютере, получены следующие значения:

Таблица 4.1

Температурные	38.6	48.2	45.3
значения процессора			
T _i			

n _i	2	5	3
n		10	

Задание 4.1

Вычислить значение выборочной дисперсии по данному распределению выборки (таблица 4.1).

Вычислить значение выборочной дисперсии по данному распределению выборки по следующим данным - таблица 4.2.

Таблица 4.2

Температурные	31,1	28,6	27,2	
значения процессора				
Ti				
n _i	3	4	3	
n	10			

Задание 4.2

Вычислить значение исправленной выборочной дисперсии по данному распределению выборки: таблица 4.1 и таблица 4.2.

Выполнение работы

Задание 4.1.

В программной среде MS Excel вычислим значения выборочной дисперсии по данному распределению выборки для таблиц 4.1. и 4.2.

Условие задания в MS Excel будет выглядеть так:

Таблица 4.1.

варианта выборки	частота встречаемости хі	количество значений в выборке
xi	ni	n
38,6	2	10
48,2	5	10
45,3	3	10

Таблица 4.2.

варианта выборки	частота встречаемости хі	количество значений в выборке
xi	ni	n
31,1	3	10
28,6	4	10
27,2	3	10

Найдем для обеих таблиц несмещенную оценку генеральной средней, определяемую по выражению:

$$\bar{x}_{e} = \frac{\sum_{i=1}^{k} n_{i} x_{i}}{n}$$

где x_i варианта выборки; n_i частота встречаемости варианты xi в выборке, и количество значений (вариант) в выборке определяется выражением:

$$n = \sum_{i=1}^{k} n_i$$

Формула для среды MS Excel будет выглядеть так:

=CYMM(A3*B3+A4*B4+A5*B5)/C3

Для таблицы 4.1. значение x_B =45.41, для таблицы 4.2. значение x_B =28.93.

Далее найдем Смещенной оценкой генеральной дисперсии служит выборочная средняя, определяемая по выражению:

$$D_{e} = \frac{\sum_{i=1}^{k} n_{i} (x_{i} - x_{e})^{2}}{n} = \frac{\sum n_{i} x_{i}^{2}}{n} - \left[\frac{\sum n_{i} x_{i}}{n}\right]^{2}$$

Проведем для подсчета значений выборочной дисперсии по данному распределению выборки промежуточные расчеты и получим итоговые цифры в графе D_в.

454,1
20752,3
9
45,41
13,1709

Для таблицы 4.2.	
Σ ni*xi	289,3
Σ ni*xi^2	8392,99
ХВ	28,93
Dв	2,3541

Использованные формулы:

 Σ ni*xi = CYMM(A3*B3+A4*B4+A5*B5)

 Σ ni*xi^2 = A3^2*B3+A4^2*B4+A5^2*B5

 $D_B = (I4/C3) - (I3/C3)^2$

Задание 4.2

Вычислим значение исправленной выборочной дисперсии по данному распределению выборки для таблиц 4.1 4.2. по формуле:

$$s^{2} = \frac{n}{n-1} D_{e} = \frac{\sum_{i=1}^{k} n_{i} (x_{i} - x_{e}^{-})^{2}}{n-1} = \frac{\sum_{i=1}^{k} n_{i} x_{i}^{2} - \frac{[\sum_{i=1}^{k} n_{i} x_{i}]^{2}}{n-1}}{n-1}$$

$$\underline{Ta6n.}_{4.1.} \qquad \underline{Ta6n.}_{4.2.}$$

_	14,6343	2,61566
S ²	3	7

Где формула s² будет иметь вид:

=(I4-(I3^2/C3))/(C3-1)

Вывод: В программной среде MS Excel удобно считать дисперсию и математическое ожидание. Можно сделать промежуточный вывод: чем меньше значения в выборке и частота встречаемости ближе к средним значениям, тем меньше будет дисперсия и математическое ожидание.

Задание 5. Формирование оценки коррелированности сигналов

На приемник поступают два сообщения – два сигнала, описываемые выражениями (5.1) и (5.2). Требуется установить степень тождественности – схожести сигналов. С этой целью проводится вычисление корреляционной функции.

Задание 5.1

Вычислить значение коэффициента корреляции для выборочных значений двух сигналов, заданных выражениями:

$$x_{1}(t) = A_{1} + \sin(\omega_{1}t_{i})^{3} + \cos(\omega_{1}t_{i})^{5} + (\frac{\sin(\omega_{1}t_{i})}{\cos(\omega_{1}t_{i} + \alpha_{2})})$$
5.1.1

При условии: A1= 0; $\omega 1 = 480$; $i = 1,2,3,\ldots,52$; $\alpha 1 = 0$

$$x_{2}(t) = A_{2} + \sin(\omega_{2}t_{i})^{3} + \cos(\omega_{2}t_{i})^{5} + (\frac{\sin(\omega_{2}t_{i})}{\cos(\omega_{2}t_{i} + \alpha_{2})})$$
5.1.2

При условии: A2= 50 ; $\omega 2 = 240,260,280, \dots520$; i= 1,2,3,......,52; $\alpha 2 = 0$

Задание 5.2

Вычислить значение коэффициента корреляции для выборочных значений двух сигналов, заданных выражениями:

$$x_{1}(t) = A_{1} + \sin(\omega_{1}t_{i})^{3} + \cos(\omega_{1}t_{i})^{5} + \left(\frac{\sin(\omega_{1}t_{i})}{\cos(\omega_{1}t_{i} + \alpha_{2})}\right)$$
 5.2.1

При условии: A1= 0; $\omega 1 = 480$; $i = 1, 2, 3, \dots, 52$; $\alpha 1 = 0$

$$x_{2}(t) = A_{2} + \sin(\omega_{2}t_{i})^{3} + \cos(\omega_{2}t_{i})^{5} + \left(\frac{\sin(\omega_{2}t_{i})}{\cos(\omega_{2}t_{i} + \alpha_{2})}\right)$$
5.2.2

При условии: A2= 50 ; ω2 =480; i= 1,2,3,....,52; α2 = 0,25;0.5;0.75;;4.0

Выполнение работы

Задание 5.1.

n=52		Дано						Уравнение 1	Уравнение 2
i	ti	A1	A2	w1	w2	al	a2	x1	x2
1	1	0	50	480	240	0	0,25	-0,851564138	62,41431966
2	2	0	50	480	260	0	0,5	-4,939554198	47,1471624
3	3	0	50	480	280	0	0,75	3,010221716	46,64249366
4	4	0	50	480	300	0	1	-0,112228301	50,83580917
5	5	0	50	480	320	0	1,25	0,740368682	48,00739471
6	6	0	50	480	340	0	1,5	-0,835392049	48,22782896
7	7	0	50	480	360	0	1,75	-15,97330416	49,94570095
8	8	0	50	480	380	0	2	2,092880607	47,88467131
9	9	0	50	480	400	0	2,25	-0,491180874	51,47049364
10	10	0	50	480	420	0	2,5	0,316077786	49,76824668
11	11	0	50	480	440	0	2,75	-1,042721364	-10,89102851
12	12	0	50	480	460	0	3	8,061457451	48,88530071
13	13	0	50	480	480	0	3,25	1,556084037	49,37408044
14	14	0	50	480	500	0	3,5	-0,824653561	49,80088825
15	15	0	50	480	520	0	3,75	-0,238191451	50,28749007
16	16	0	50	480	540	0	4	-1,730171872	44,23961367

Зададим условия задачи в программном комплексе MS Excel:

Поскольку t не задано, будем измерять его с интервалом 1 секунду в течение 52 секунд (в готовом модуле можно задать любое значение t), а уравнения 1 и 2 зададим выражениями:

=C3+SIN(E3*B3)^3+COS(E3*B3)^5+((SIN(E3*B3))/(COS(E3*B3+G3))) =D3+SIN(F3*B3)^3+COS(F3*B3)^5+((SIN(F3*B3))/(COS(F3*B3+H3)))

Для вычисления коэффициента корреляции, по условию задания, нам потребуется провести несколько промежуточных расчетов.

Вычисление x1 и x2 среднего проведем по формуле:

$$\bar{x}_{e} = \frac{\sum_{i=1}^{k} n_{i} x_{i}}{n}$$

Формула будет иметь вид: =СРЗНАЧ(ІЗ:І54).

Далее подсчитаем столбец x_i-x_в для каждого уравнения и выведем в итогах столбца сумму по столбцу. Это необходимо для вычисления значения дисперсии, определяемой по формуле:

$D(\lambda$	$C_{i} = \frac{\sum_{i=1}^{N} (i)}{\sum_{i=1}^{N} (i)}$	$\frac{x_i - x_s}{N - 1}^2$
	x1-x1	x1-x1
	ср	cp^2
	- 0,8140 6	- 0,852970 7
	- 4,9395 5	- 4,939554 2
	3,0102 22	3,010221 72
	0,1122 3	- 0,112228 3
	0,7403 69	0,740368 68
	- 0,8353 9	- 0,835392
	- 15,973 3	- 15,97330 4
	2,0928 81	2,092880 61
	- 0,4911 8	- 0,491180 9
	0,3160 78	0,316077 79

Посчитаем дисперсию для каждого уравнения:

D(x1)	D(x2)
46,0533	5,36986
6	2

Формула будет иметь вид: =О55/(А54-1)

Далее посчитаем корреляционный момент (коэффициент ковариации) по формуле:

$$\operatorname{cov}(X,Y) = \frac{\sum_{i=1}^{N} [(x_i - x_e)(y_i - y_e)]}{N-1}$$

Для вычислений коэффициента введем еще 3 столбца с промежуточными расчетами и итоговой суммой под столбцом.

		(x1-x1 cp)*(x2-x2
x1-x1 cp	x2-x2 cp	cp)
-0,81406	16,36096442	-13,31881329
-4,93955	47,1471624	-232,8859639
3,010222	46,64249366	140,4042473
-0,11223	50,83580917	-5,705216513
0,740369	48,00739471	35,54317156
-0,83539	48,22782896	-40,28914485
-15,9733	49,94570095	-797,7978729
2,092881	47,88467131	100,2169
-0,49118	51,47049364	-25,28132206
0,316078	49,76824668	15,73063723
-1,04272	-10,8910285	11,35630811
8,061457	48,88530071	394,0867717

Проведем вычисления коэффициента корреляции по выражению:

$$R(\mathbf{X},\mathbf{Y}) = \frac{\operatorname{cov}(\mathbf{X},\mathbf{Y})}{\sqrt{D(\mathbf{X})}\sqrt{D(\mathbf{Y})}}$$

D(x1)	46,05336
D(x2)	5,369862
cov(x1,x	10 11920144
2)	19,11650144
R (x1,x2)	1,215729959

Где формула R(x1, x2) будет иметь вид: =Q55/(КОРЕНЬ(M3)*КОРЕНЬ(N3))

Проведем проверку вычисленного значения встроенной функцией КОРЕЛЛ.

КОРРЕЛ

61

Где, формула для вычислений для столбцов x1 и x2 будет иметь вид: =КОРРЕЛ(J3:J54;I3:I54)

Вычисленные значения совпадают.

Для оценки тесноты, или силы, корреляционной связи обычно используют общепринятые критерии, согласно которым абсолютные значения rxy < 0.3 свидетельствуют о слабой связи, значения rxy от 0.3 до 0.7 - о связи средней тесноты, значения rxy > 0.7 - о сильной связи.

Более точную оценку силы корреляционной связи можно получить, если воспользоваться таблицей Чеддока:

Абсолютное значение r _{xy}	Теснота (сила) корреляционной связи
менее 0.3	слабая
от 0.3 до 0.5	умеренная
от 0.5 до 0.7	заметная
от 0.7 до 0.9	высокая
более 0.9	весьма высокая

Полученное значение коэффициента корреляции <0.3, следовательно, между выражениями слабая корреляционная связь.

Найдем значение t-критерия для оценки статистической значимости корреляционной связи по формуле:

$$t_r = \frac{r_{xy}\sqrt{n-2}}{\sqrt{1-r_{xy}^2}}$$

Полученное значение tr сравнивается с критическим значением при определенном уровне значимости и числе степеней свободы n-2. Если tr превышает tкрит, то делается вывод о статистической значимости выявленной корреляционной связи.

Tr	1,149145378						
Критиче	Критическое значение tкрит найдем по таблице критических значений корреляции Пирсона						
к=n-2	50	число степеней свободы					
р	0,01	уровень значимости					
tкрит	0,451	по таблице корреляции Пирсона					
ИТОГ	Статистически	если Тр больше Ткрит то связь является статистически					
moi	значимо	значимой					

Задание 5.2.

Выполнение задания 5.2. будем проводить аналогично выполнению задания 5.1. с поправкой на а2, заданное с интервалом 0.25, 0.5, 0.75....4.0.

Модуль подсчета в среде MS Excel будет выглядеть следующим образом:

NI	r	_	
IN	=	٦.	

1, 5									
2		Дано						Уравнение 1	Уравнение 2
i	ti	A1	A2	w1	w2	al	a2	x1	x2
1	1	0	50	480	480	0	0,25	-0,742317023	49,25768298
2	2	0	50	480	480	0	0,5	-2,347225118	47,65277488
3	3	0	50	480	480	0	0,75	-2,047080428	47,95291957
4	4	0	50	480	480	0	1	4,941031657	54,94103166
5	5	0	50	480	480	0	1,25	0,550559816	50,55055982
6	6	0	50	480	480	0	1,5	-0,661367124	49,33863288
7	7	0	50	480	480	0	1,75	-2,022065746	47,97793425
8	8	0	50	480	480	0	2	-0,217004877	49,78299512
9	9	0	50	480	480	0	2,25	-1,176793495	48,82320651
10	10	0	50	480	480	0	2,5	1,321234241	51,32123424
11	11	0	50	480	480	0	2,75	5,850996656	55,85099666
12	12	0	50	480	480	0	3	-4,972514788	45,02748521
13	13	0	50	480	480	0	3,25	-0,625919561	49,37408044

Выведем столбцы со средними значениями и разницу x1 – x1ср, x2 – x2ср,

_x1 cp	x2 cp	x1-x1 cp	x1-x1 cp^2	(x1-x1 cp)*(x2-x2 cp)
0,27028				
8	50,2702883	-1,01261	-0,8153728	1,02536949
		-2,34723		-111,8517901
		-2,04708		-98,16348314
		4,94103		271,4653767

2	
Ζ	
0,55056	27,8311069
-0,66137	-32,63094974
-2,02207	-97,0145374
-0,217	-10,80315275
-1,17679	-57,45483181
1,32123	
4	67,807372
5,85099	
7	326,7839947
-4,97251	-223,8998361
-0,62592	-30,90420274
-1,10955	-54,24625936
0,85560	
2	43,51216176
1,78207	
1	92,27931581

Проведем вычисления коэффициента корреляции по выражению:

 $R(\mathbf{X},\mathbf{Y}) = \frac{\operatorname{cov}(\mathbf{X},\mathbf{Y})}{\sqrt{D(\mathbf{X})}\sqrt{D(\mathbf{Y})}}$

D(x1)	-0,73490958
D(x2)	50,27028828
cov(x1,x 2)	1090,8247
R (x1,x2)	0,15009

Выполним проверку:

КОРРЕЛ 0,15

Результаты совпадают, следовательно, вычисления проведены правильно.

Поскольку значение коэффициента корреляции <0.3 имеем дело со слабой корреляционной связью.

Найдем значение t-критерия для оценки статистической значимости корреляционной связи.

Найдем значение t-критерия для оценки статистической значимости корреляционной связи:		
Tr	1,073453301	

Вывод	Слабая корреляционная связь		
Критическое значение tкрит найдем по таблице притических значений корреляции Пирсона			
к=n-2	50	число степеней свободы	
р	0,01	уровень значимости	
tкрит	0,451	по таблице корреляции Пирсона	
ИТОГ	Статистически	если Тр больше Ткрит то связь является статистически	
	значимо	значимой	

Таким образом, мы исследовали возможность обработки сигналов в среде MS Excel, оценивали их взаимосвязь и статистическую значимость. Отмечается, что, хотя на первый взгляд выражения кажутся похожими, на самом деле они имеют мало общего из-за разницы в значении переменных. Тем не менее, даже небольшая связь может быть статистически значимой.